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Abstract— It is often desirable to capture and map semantic
information of an environment during simultaneous localization
and mapping (SLAM). Such semantic information can enable
a robot to better distinguish places with similar low-level
geometric and visual features and perform high-level tasks
that use semantic information about objects to be manipulated
and environments to be navigated. While semantic SLAM has
gained increasing attention, there is little research on semantic-
level data association based on semantic objects, i.e., object-level
data association. In this paper, we propose a novel object-level
data association algorithm based on bag of words algorithm
[1], formulated as a maximum weighted bipartite matching
problem. With object-level data association solved, we develop
a quadratic-programming-based semantic object initialization
scheme using dual quadric and introduce additional constraints
to improve the success rate of object initialization. The inte-
grated semantic-level SLAM system can achieve high-accuracy
object-level data association and real-time semantic mapping
as demonstrated in the experiments. The online semantic map
building and semantic-level localization capabilities facilitate
semantic-level mapping and task planning in a priori unknown
environment.

I. INTRODUCTION

In order for robots to interact intelligently with the real
world and perform high level tasks, semantic information
of its surroundings must be acquired. Traditional visual
or visual-inertial simultaneous localization and mapping
(SLAM) algorithms extract low-level geometric features such
as corners, lines and surface patches from image sequence to
build sparse or dense point cloud map. However, low-level
geometric map is insufficient for more sophisticated tasks,
such as getting a book from a particular desk or carrying
meal to a particular nightstand for a patient. It is often
necessary to add semantic information into the map, which
motivates the need for semantic SLAM. While semantic
SLAM has gained increasing attention in the literature (see
Related Work), there is little research on semantic-level data
association based on semantic objects. This paper introduces
an integrated system for performing semantic-level SLAM,
addressing the key problem of object-level data association.
This endeavour is our first step towards a visual semantic
SLAM algorithm which would tightly integrate geometric
and semantic information.

The major contributions of our paper are the following:

• an autonomous object-level data association algorithm
utilizing both geometric and appearance information of
the object;
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• a novel object initialization scheme improving the suc-
cess rate of object initialization;

• an integrated, keyframe-based, real-time semantic
SLAM system without the use of pre-built object
database. In other words, there is no need to survey
the environment to build a database of object shape,
size and appearance before running our semantic SLAM
algorithm.

A. Related Work

In order to bridge the gap between perception and action,
the robotics community has taken a keen interest in semantic
SLAM. The pioneering work of SLAM++ [2] performs
object-level SLAM using a depth camera. The main restric-
tion being that an object database of both 3D shape and
global description must be built in advance. Improving on
[2], the work in [3] relies solely on monocular input and
learns the scale of the map from object models. Nevertheless,
the same restriction remains as a pre-built object database
is still required. Refs. [4], [5] resort to novel soft data
association which in turn circumvents the need of having
to assign incoming detected object to objects spawned in
map. The drawback is that the object is still represented by
3D points instead of 3D shape. This representation limits
the kind of interaction the robot can have with the physical
world. Grasp operation, for example, may not be feasible
with only point representation.

To address this issue of object representation, one method
[6] used dual quadrics to capture the shape and pose of an
object and developed a tailored SLAM backend for graph op-
timization. Dual quadric is a mathematically elegant solution
as it can be compactly defined by nine continuous parameters
and is also used for object representation in this paper.
However, [6] leaves the key problem of object-level data
association unsolved. Another method [7] integrates object
detection module and RGB-D SLAM and further converts
semantically augmented 3D point clouds to Octomap, which
makes advanced missions such as grasp point selection possi-
ble. Although techniques including multi-threads processing
are employed to speed up Octomap creation, their results
generally take 50 ∼ 200s to build the Octomap. Thus, this
method falls short in real-time performance.

There are also works that directly add more semantics
to the map generated from SLAM. The work in [8] uses a
SLAM system to provide correspondences from 2D frame
into a 3D map. These correspondences allow the semantic
prediction of a Convolutional Neural Network (CNN) from
multiple viewpoints to be probabilistically fused into the
map. However, the semantic predictions are only loosely
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added to the map and do not aid the task of SLAM. Similarly,
the work in [9] also fuses 2D semantic segmentation and
sparse 3D points from SLAM. This work is closely related
to 3D reconstruction in computer vision as the 3D scene is
represented in the form of voxels enhanced with semantic
labels. Though the time for 3D reconstruction is not given
in the paper, considering the size of the voxel representation
and the time to perform optimization, real time performance
is almost impossible.

II. SYSTEM OVERVIEW

Fig. 1. System overview, showing all the steps performed in semantic
object detection and tracking thread and semantic mapping thread. The main
components of the map are also shown.

Figure 1 presents an overview of our system composed of
two threads: semantic object detection and tracking (Sec. III)
and semantic mapping (Sec. IV). The map contains a set
of map objects and semantic keyframes, as well as the
correspondence between them. A semantic keyframe stores
the map objects it has observed in the frame image. At the
same time, each map object records the sequence of semantic
keyframes in which this object has been observed. Similar
to [6], our semantic SLAM employs semantic objects as
landmarks and represents them as dual quadrics. The at-
tributes of map objects and semantic keyframes are described
in the Appendix. Next, we provide more details about the
algorithms used in these two threads.

III. SEMANTIC OBJECT DETECTION AND TRACKING

In this section, we describe the semantic object detection
and tracking thread. The key component of this thread is
object-level data association—an essential step for robust
semantic SLAM. Before we could perform data association,
we first perform object detection and extract ORB features
in the region of interest (ROI) where objects are detected.
These features are subsequently converted to Bag of Words
(BoW) [1] vectors to describe the detected objects. Finally,
the data association step is performed to match the semantic
measurements generated by object detector to map objects.

A. Object Detection and Conversion to BoW vectors

Our algorithm uses an ROS implementation [10] of
YOLOv3 [11] as real-time object detector. For every pro-
cessed RGB or grey image It, YOLOv3 outputs a set of
semantic measurements St = {zk}, where each semantic
measurement zk = {bk, ck, sk} is a collection of three at-
tributes, i.e., bounding box bk, object class ck, and detection

score sk. We discard semantic measurements with bounding
boxes smaller than a certain threshold as we deemed them
to hold too little image content to be robustly tracked.

The bag of words algorithm [1] converts the 2D image
content inside a bounding box into a 1D BoW vector
describing the appearance of the detected objects. The BoW
vectors are compact to store and easy to compare. Each
entry of the BoW vector is a weighted occurrence count of
a particular visual word, i.e., a discretized ORB descriptor
space. ORB features are required in the conversion. For each
ROI bounded by a bounding box, FAST corners are extracted
at a consistent density and the number of corners extracted
per ROI varies according to the area of the ROI. For ROI that
is textureless or has low contrast and holds few corners, its
corresponding semantic measurement and corners extracted
in this ROI are discarded. The ORB descriptors are then
computed for the remaining FAST corners.

In the next step, we employ visual vocabulary [1], which is
the discretization of the descriptor space, to convert the ORB
features extracted in each bounding box to BoW vectors. It
is structured as a tree with binary nodes which are created by
k-medians clustering of training ORB descriptors. The leaves
of the tree are the words of the visual vocabulary, weighted
with the term frequency - inverse document frequency (tf-idf)
according to their relevance in the training corpus. Words
with fewer occurrences in the training images are deemed
more discriminative and given a higher weight. Instead of
using a single vocabulary, we create vocabularies for every
object class in our implementation. Our intention is to ensure
that each vocabulary is uniquely suited to distinguish the
image content in bounding boxes of a particular object class.
Each vocabulary is built offline with the ORB descriptors
extracted within the ground truth bounding boxes from the
COCO dataset images [12]. With k = 5 branches and L = 5
depth levels, each vocabulary has 3125 words.

When ORB features are extracted from a bounding box of
certain object class, we use the matching visual vocabulary
to convert them into a BoW vector. The conversion process
is described as follows: For all the given ORB features,
their descriptor vectors traverse the vocabulary tree from the
root to the leaves, selecting at each level the nodes which
minimizes the Hamming distance [13]. The BoW vector is
simply the weighted occurrence counts of the words, i.e.,
leaves. The BoW vector provides a way for us to quantify
the similarity between the semantic measurements and the
map objects based on their appearance.

B. Object-Level Data Association

We propose an object-level data association scheme to
match the incoming semantic measurements from YOLOv3
to registered objects in the map. Our method is a two-step
frame-to-map matching, described as follows.

The first step is to determine the set of matching object
candidates T ca for a semantic measurement zk ∈ St.
Each map object τj contains its class label. For a semantic
measurement zk = {bk, ck, sk}, only objects with class label
ck are considered. Apart from the requirement on object



class, we introduce geometric checks to rule out objects
with similar appearances but incorrect locations. Consider
two cases:
Case 1: The map object τj has quadric representation. In
this case, the projection of the object quadric center should
reside inside the bounding box of the semantic measurement
zk, as shown on the right frame of Fig. 2.
Case 2: The map object τj does not have quadric representa-
tion. In this case, we assume that the 3D point corresponding
to the center of the bounding box of the latest observation
of τj is projected inside the bounding box of zk. Based
on this assumption, the corresponding epipolar line should
go through the bounding box of zk. The epipolar line is
represented by the real line on the right frame of Fig. 2.

Fig. 2. The geometric requirements imposed on matching object candidates

Once we have determined the set of matching object
candidates T ca, we proceed to the second step of data asso-
ciation. This step performs data association based on object
appearance. A data association score is calculated between
the semantic measurement and every potential matching
object. Note that the assignment of semantic measurements
to map objects is coupled, since the assignment of one
semantic measurement to a particular map object means that
map object can no longer be considered as candidate for
other measurements. Our system solves the assignment of
all semantic measurements by trying to maximize the sum
of data association score. The details are given below.

For every map object τj ∈ T ca, our system goes though
semantic keyframes Ki ∈ Kj , where Kj stands for the
set of semantic keyframes that share observation of the
same object τj . A L1-score s(v1,v2) = 1 − 0.5

∣∣v1/|v1| −
v2/|v2|

∣∣ is calculated between the BoW vector stored in the
semantic keyframe Ki and the BoW vector corresponding
to the bounding box of the semantic measurement zk. The
maximum score among Kj is considered the data association
score ckj between the semantic measurement zk and the map
object τj . Next, we formulate the object-level data associ-
ation as a maximum weighted bipartite matching problem
(assignment problem). First, we introduce a set of Boolean
decision variables: For each semantic measurement zk and a
map object τj , let

xkj =

{
1, if zk is assigned to τj ,
0, otherwise.

(1)

And the assignment problem is formulated as an integer-
programming problem as follows:

argmax
xkj

∑
{k:zk∈Sc

t }

∑
{j:τj∈T ca}

ckjxkj (2)

s.t.
∑

{j:τj∈T ca}

xkj ≤ 1,
∑

{k:zk∈Sc
t }

xkj ≤ 1. (3)

where Sct is the set of semantic measurements taken on
image It with class c. The constraints (3) mean that (a)
each semantic measurement can only be assigned to at most
one map object and some semantic measurements cannot
be assigned to map objects because they are either from
new objects that have not yet been observed or due to false
detections; and (b) each map object could only be associated
with at most one semantic measurement.

The problem defined in (2) can be solved using a cost-
scaling push-relabel algorithm [14], [15], [16], readily im-
plemented in [17]. This algorithm has a time complexity of
O(
√
nm log (nC)), where n is the number of nodes in the

bipartite graph, m is the number of edges in the bipartite
graph, and C is the largest edge cost (all edge costs need to
be converted to integers).

Remark. YOLOv3 could sometimes assign different class
labels to the same object in some corner cases. Performing
data association only considering objects with the same class
label would subsequently lead to wrong matches. Future
work would calculate a matching score between the class of
the map objects and the class of the semantic measurement
instead of simply ruling out map objects of different classes.

IV. SEMANTIC MAPPING

In this section, we describe the semantic mapping thread,
which is performed on every new semantic keyframe Ki.
The semantic keyframe is generated by the semantic object
detection and tracking thread every T image frames. When a
new semantic keyframe is added, we update the map database
to include this keyframe as well as the relations between map
objects and semantic keyframes.

A. New Map Object Creation and Initialization

In this section, we propose a novel object initialization
scheme. It is observed that sometimes the object initialized
based on [6] is behind or intersects with the camera principal
plane. We address this problem with a new object initializa-
tion scheme which can increase the success rate of object
initialization.

Unlike in geometric SLAM where a map point is created
and initialized at the same time, in our approach, a new
object τj is created and registered in the map if it is
observed the first time in the current semantic keyframe.
Upon creation, the class of τj is determined, the current
semantic keyframe observing τj is stored, and the number
of observations is set to one. However, some attributes of
τj cannot be initialized by one observation, i.e., the shape,
rotation, and translation (refer to Appendix). Only after a
sufficient number of observations have been made on τj , its



initialization procedure is performed. The initial shape and
pose for the quadric representation of τj is calculated from
semantic measurements zk stored in a sequence of semantic
keyframes Ki ∈ Kj .

A quadric, in its dual form, is represented by the locus of
all planes tangent to the quadric. A tangent plane Π satisfies:

ΠTQ∗Π = 0 (4)

where Q∗ is a 4×4 symmetric matrix defining a quadric and
only defined up to scale, and Π is a 4×1 vector corresponding
to the coefficients of general form of the plane equation. Note
that coefficients of plane equations are the parametrization
of all planes mentioned below.

We can represent a generic dual quadric with a 9-vector
q̂ = [q̂1, · · · , q̂9] where each element corresponds to one
of the first nine independent elements of symmetric matrix
Q∗. The last element of Q∗ is set to −1 to define the scale
of Q∗ to be 1. The quadric representation of map object
τj can be initialized with quadratic programming to fit its
defining equation (4). Expanding (4) leads to the following
linear equation:[

Π(1)2, 2Π(1)Π(2), 2Π(1)Π(3), 2Π(1)Π(4),Π(2)2,

2Π(2)Π(3), 2Π(2)Π(4),Π(3)2, 2Π(3)Π(4),Π(4)2
]

· [q̂1, q̂2, q̂3, q̂4, q̂5, q̂6, q̂7, q̂8, q̂9,−1]T = 0. (5)

For each semantic measurement zk taken on semantic
keyframe Ki ⊂ Kj and associated with τj , we can generate
four tangent planes to the quadric of the object τj based on
its bounding box:

ΠT
k,xmin = [1, 0,−xk,min]Pi, ΠT

k,xmax = [1, 0,−xk,max]Pi

ΠT
k,ymin = [0, 1,−yk,min]Pi, ΠT

k,ymax = [0, 1,−yk,max]Pi.
(6)

Here the camera projection matrix Pi is calculated from the
camera pose Ti

w recorded in Ki. The camera pose Ti
w is

initialized from the odometry measurements.
By collecting all tangent planes generated from the se-

mantic measurements that are associated to object τj and
substitute them into (5), we obtain a linear system of the

form Aj

[
q̂
−1

]
= 0 with Aj containing the coefficients of all

tangent planes to the quadric of map object τj as in (5). For
the quadratic programming based initialization process, the
objective function is the sum of square errors of the residual
on the left hand side of (5). Formally,

min
q̂

1

2
q̂THq̂ + fT q̂. (7)

Let
B = AT

j Aj =

[
B99 B91

B19 B11

]
(8)

where Bij is a submatrix of i rows and j columns. Then
H = B99 and f = B91.

To improve the success rate of object initialization, we
propose to include new constraints preventing the objects
from being incorrectly initialized. The first set of constraints

specify that the initialized quadric should be in front of the
camera:

(oτj − oKi
) · zKi

≥ 0,∀Ki ∈ Kj (9)

where oKi is the camera center of semantic keyframe Ki,
zKi

is the optical axis of the camera of Ki, oτj is the quadric
center of object τj and oτj = −

[
q̂4 q̂7 q̂9

]T
. Both oKi

and zKi
can be extracted from the camera pose Ti

w of Ki.
The second set of constraints specify that the principal

plane of the camera should not intersect with the quadric:

ΠT
Ki

Q∗(q̂j)ΠKi
≤ 0,∀Ki ∈ Kj (10)

where ΠKi
=

[
zKi

−zKi
· oKi

]
is the principal plane of Ki. It

is not be be confused with the tangent planes defined in (6).
The third set of constraints specify that the projection

of oτj should remain inside the bounding box. For each
semantic measurement zk taken on semantic keyframe Ki ∈
Kj and associated with τj , we have

xk,min ≤ u ≤ xk,max, yk,min ≤ v ≤ yk,max (11)

where [u, v, 1]T = Pioτj is the projection of oτj on semantic
keyframe Ki.

Constraints (9), (10) and (11) are linear. A quadratic
programming problem with linear constraints can be readily
solved using convex optimization tools such as CGAL [18].

The solution of the quadratic programming represents a
generic quadric surface, not necessarily an ellipsoid; we
therefore constrain each quadric to be an ellipsoid by ex-
tracting the quadric rotation, translation and shape as shown
in (12), using methods introduced in [19]:

Q∗ =

[
Rdiag(a2, b2, c2)RT − ttT t

tT −1

]
(12)

where t = [t1, t2, t3]T is the translation vector, R is the 3×3
rotation matrix and a, b, c are the semi-axes of the ellipsoid.

Hence, we initialize all map objects by solving the
quadratic programming problem (7) over the complete set of
detections for each map object, and constrain the estimated
quadrics to be ellipsoid. The constrained quadrics are deemed
failure and discarded if they fail to satisfy constraints (9),
(10) and (11) or have an average re-projection error greater
than 100 pixels. Note that our initialization method (marked
by ’Quadratic’) yields a higher success rate than the method
originally proposed in [6] (marked by ’SVD’), as shown in
Fig. 3. Another observation is that quadric initialization has a
higher success rate if more observations are utilized, hence in
practice, we require a minimum number of ten observations
to ensure robust initialization.

B. Bundle Adjustment

The object initialization process only utilizes the first few
observations and the generated quadrics are still sub-optimal.
In order to take the full advantage of all the observations,
we perform a joint optimization of map objects and camera
poses of semantic keyframes in bundle adjustment.



Fig. 3. The initialization success rate

Our data association pipeline would produce few errors, as
demonstrated in the experiment section. With accurate data
association, the maximum a posterior (MAP) estimation of
map objects and camera poses of semantic keyframes can be
solved to make improvements on the initialization results by
maximizing the product of factors:

X ∗, T ∗ = argmax
X ,T

∏
i

p(ui+1 | xi+1, xi)︸ ︷︷ ︸
Odometry

·
∏
i

p(xi)︸ ︷︷ ︸
Pose Prior

·

∏
j

∏
{i:Ki∈Kj}

p(zji | xi, τj)︸ ︷︷ ︸
Semantic

·
∏
j

p(τj)︸ ︷︷ ︸
Object Prior

(13)

where T = {τj} is the set of map objects, X = {xi = T iw}
is the set of camera poses of semantic keyframes, ui is the
odometry measurement and zji is the semantic measurement
of object τj on semantic keyframe Ki. Further, assuming
Gaussian measurement and process models and uniform
distribution of object and pose, by taking the negative log on
the objective function, (13) can be rewritten as a nonlinear
least-squares problem:

X ∗, T ∗ = argmin
X ,T

∑
i

‖ho(xi+1, xi)− ui+1‖2Σu

+
∑
j

∑
{i:Ki∈Kj}

‖hs(xi, τj)− zji ‖
2
Σz

(14)

where ‖·‖Σ is the Mahalanobis norm, Σu and Σz are the
covariance matrices of odometry measurements and semantic
measurements respectively, ho and hs are the sensor models
of odometry and semantic measurements respectively. While
ho is already known, hs needs to be established. Since we
perform data association for objects and semantic measure-
ments with the same class label, the predicted object class is
always aligned with the measurements. On the other hand,
there would be discrepancy between predicted bounding box
and the bounding box from semantic measurement. The
predicted bounding box is calculated from the dual conic
projection from object τj on semantic keyframe Ki:

C∗ij = PiQ
∗
τjP

T
i (15)

where C∗ij is a 3×3 matrix defining the dual conic projection,
Pi is the projection matrix. The predicted bounding box
hs(xi, τj) is set to be the smallest bounding box containing
the part of the conic on the image.

With the established sensor model, the problem described
in (14) can be readily solved using modern libraries such

as g2o [20]. If a semantic keyframe is inserted when bundle
adjustment is busy, a signal is sent to stop bundle adjustment,
so that the semantic mapping thread can process the new
semantic keyframe as soon as possible.

V. EXPERIMENTAL EVALUATION

A. Data Association

We evaluate the data association performance on the TUM
RGB-D fr1 xyz sequence [21]. The original sequence is
appended with semantic measurements from YOLOv3. The
ground truth object IDs are then manually labeled for those
semantic measurements.

First, we clarify how accuracy is evaluated in our experi-
ment. The key idea is to find the correspondences between
the object IDs assigned to semantic measurements in ground
truth dataset and the IDs assigned by our data association
algorithm, as shown in Fig. 4. This task is formulated and
solved as a maximum weighted bipartite matching problem.
The complete bipartite graph has two disjoint vertices sets
U and V . The IDs labeled in the ground truth dataset form
the vertices set U . The IDs assigned in the data association
algorithm form the vertices set V . The reward function r(i, j)
on a particular edge (i, j) ∈ U×V is the number of semantic
measurements assigned ID i ∈ U in the ground truth dataset
and ID j ∈ V in the data association algorithm respectively.
For example, if our dataset only consists of the one image
shown in Fig. 4, then we would have r(8, 2) = 1 and
r(8, 5) = 0 because book object 8 on the left and book object
5 on the right do not share the same bounding box. Assume
IDs assigned by our data association algorithm are identical
to the IDs in ground truth dataset on every frame, then the
total reward we obtain is simply the number of semantic
measurements assigned IDs in both the ground truth dataset
and the data association algorithm. This reward, denoted
by rmax, is the maximum possible reward. By solving the
maximum weighted bipartite matching problem, we obtain a
particular matching. The sum of rewards of all edges inside
that matching is considered the rewards obtained by our data
association algorithm rda. The ratio rda/rmax is considered
the accuracy of our data association algorithm.

Fig. 4. The correspondences between the IDs labeled in the ground truth
dataset and the IDs assigned by the data association algorithm are found by
solving the maximum weighted bipartite matching problem.

The results show that the accuracy of our data associ-
ation algorithm is 790/857 ≈ 92.19%. The errors can be
put into two categories: (I) 60 mismatch cases are due to



YOLOv3 assign different object classes to the same object.
Since our data association algorithm assumes that semantic
measurements with different object classes correspond to
different map objects, errors can occur. (II) 9 mismatch cases
are caused by errors occurred inside our data association
pipeline. Those errors tend to happen for objects with tex-
tureless surface, such as the monitor shown in Fig. 4.

B. Results of Semantic Mapping

Evaluated on the TUM RGB-D fr2 desk sequence, the
results of semantic mapping are shown in Fig. 5 and 6. Fig.
5 shows the projected quadrics of map objects (in green)
generated by our proposed initialization scheme on the image
plane. The blue bounding boxes were results from YOLOv3.
For initialization, only the first few observations are utilized.
Hence, when observing from frames whose parallaxes with
respect to the initialization frames are significant, we can see
that the initialization results are far from ideal. To quantify
the accuracy of mapping, we calculate the reprojection error
[22] for all objects. The average reprojection error per object
per frame is 87 pixels.

Fig. 5. Results from only initialized map objects (in green).

The bundle adjustment described in IV-B takes on average
136ms to finish. Based on the current semantic keyframe
rate (one out of every T=4 image frames is chosen as
the semantic keyframe), we can process incoming frames
at a 30Hz rate, which is reasonable to perform in real-
time for most mapping tasks. Fig. 6 shows the results
after performing the bundle adjustment. We can see that
improvements have been made upon the initialization results,
and the quadric projections on the image tightly fit the
bounding boxes with the exception of the potted plant 0. The
quadric representation of this object is optimized to a low-
volume ellipsoid. This problem will be addressed in future
work by incorporating object shape prior to bundle adjust-
ment. The average reprojection error per object per frame
decreases to 29 pixels after performing bundle adjustment.
The results suggest that the optimized quadrics in 3D space
are reasonable representations of the actual objects.

VI. CONCLUSIONS

In this paper, we have developed an integrated, keyframe-
based semantic SLAM system without the use of pre-built
object database. We have addressed the key problem of

Fig. 6. Results after performing bundle adjustment (in green).

object-level data association utilizing both geometric and ap-
pearance information of map objects. We have also proposed
a novel object initialization scheme to boost the success rate
of object initialization and effectiveness of data association.
The experimental results show that our data association
algorithm has an accuracy of 92.19% and that the generated
semantic map is a reasonable presentation of the objects in
the environment.

Albeit the good results on data association and mapping,
we have observed an increase in tracking errors comparing to
ORB-SLAM2 [23]. Evaluated on the TUM RGB-D fr2 desk
sequence, the error increases from 2.0cm to 5.9cm if only
high-level semantic information and odometry measurements
are used, which suggests the need for combining high-level
semantic information and low-level geometric information in
cases when high-accuracy in tracking performance is needed.
This will be one further step of our work. We will also
consider incorporating semantic SLAM and motion and task
planning in the future.

APPENDIX

The attributes of map objects: In each map object τj ,
the following attributes are stored:
• Quadric shape represented by three semi-axes: a, b, c.
• Rotation matrix of the quadric R.
• Translation of the quadric oτj = t.
• The class label of the object.
• The set of semantic keyframes Kj that can observe this

object.
• The number of observations.

The attributes of semantic keyframes: Each semantic
keyframe Ki stores the following information:
• The camera pose Ti

w representing the world frame with
respect to the camera frame, in terms of a homogeneous
transformation matrix.

• The camera intrinsics, including focal length and prin-
cipal point.

• Objects observed in this semantic keyframe.
• The set of semantic measurements taken at this frame,

associated or not to a map object.
• BoW vectors for the ROI defined by bounding boxes,

used to describe observed map objects.
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[1] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[2] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “Slam++: Simultaneous localisation and mapping at the
level of objects,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2013, pp. 1352–1359.
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[20] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g 2 o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 3607–3613.

[21] J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Bur-
gard, D. Cremers, and R. Siegwart, “Towards a benchmark for rgb-
d slam evaluation,” in Proc. of the RGB-D Workshop on Advanced
Reasoning with Depth Cameras at Robotics: Science and Systems
Conf. (RSS), Los Angeles, USA, June 2011.

[22] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[23] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

https://github.com/leggedrobotics/darknet{_}ros
https://github.com/leggedrobotics/darknet{_}ros
https://developers.google.com/optimization/
https://doc.cgal.org/5.1/Manual/packages.html
https://doc.cgal.org/5.1/Manual/packages.html

	I Introduction
	I-A Related Work

	II System Overview
	III Semantic Object Detection and Tracking
	III-A Object Detection and Conversion to BoW vectors
	III-B Object-Level Data Association

	IV Semantic Mapping
	IV-A New Map Object Creation and Initialization
	IV-B Bundle Adjustment

	V Experimental Evaluation
	V-A Data Association
	V-B Results of Semantic Mapping

	VI Conclusions
	Appendix
	References

