

ROBOTICS RESEARCH ENGINEER · AI/ML SPECIALIST

San Francisco Bay Area, CA

□ (+1) 774-526-8659 | kartik.patath@gmail.com | A kartikpatath.github.io | □ kartikpatath | □ kartikpatath

"Robotics Research Engineer with 4 years applying perception for autonomous vehicles, specializing Localization, SLAM, and production-ready robotics frameworks"

Field(s) of Interest

Perception, Localization and Mapping, Deep Learning, Robotic systems engineering

Education

Worcester Polytechnic Institute (WPI)

MA, USA

Masters of Science in Robotics Engineering CGPA - 4/4

August 2019 - May 2021

Core Technical Skills

Programming Languages Python (Prototype/Production), C++ (Real-time Systems)

ML/AI Frameworks TensorFlow, PyTorch, Transformers

Robotics & Perception ROS, SLAM, Computer Vision, Sensor Fusion

Production & Deployment Git, Docker, GCP, AWS, Large-scale Data Processing pipelines, CI/CD

Computer Vision & SLAM GTSAM, ORB-SLAM, Visual Odometry, 3D Reconstruction

Professional Experience

Woven by Toyota, U.S, Inc.

Palo Alto, CA

Localization and Mapping Engineer

June. 2022 - present

- Mapping Systems for Autonomous Driving: Designed and deployed large-scale localization frameworks for real-world autonomous vehicle fleets, processing thousands of data files in parallel using Python and C++ based production systems.
- Offline Perception Pipelines: Designed the localization algorithm for the change detection pipeline using GTSAM factorgraph optimization with GPS and visual-inertial odometry, for robust localization.
- Cross-functional Research Collaboration: Led technical integration across perception, mapping, and ML teams, translating research concepts from PoCs into production-ready systems deployed on vehicle fleets.

Velodyne Lidar San Jose, CA

Computer Vision Engineer

Aug. 2021 - March 2022

- ML-Driven 3D Perception Systems: Contributed to development of 3D object tracking and prediction modules with deep learning-based occupancy estimation for the Vella Development Kit, deployed in commercial ADAS applications.
- Real-world Robotics Deployment: Contributed in automating training and validation of end-to-end ML pipelines for LiDAR perception in autonomous vehicles.

Honda Research Institute, USA

San Jose, CA

Robotics Research Intern

Feb. 2021 - May 2021

• Path Planning for Robotics: Researched and implemented curiosity-driven exploration algorithms for autonomous navigation in unknown environments, combining reinforcement learning with traditional robotics approaches.

NASA JPL, Team COSTAR

Pasadena. CA

JVSRP Research Intern

Aug. 2020 - Jan. 2021

• Multi-modal Sensor Fusion for Robotics: Developed advanced artifact localization methods using camera and LiDAR fusion for subterranean robotic exploration, deployed in the DARPA SubT competition final stage.

Worcester Polytechnic Institute

Worcester, MA

Research Assistant

Sep. 2019 - Aug. 2020

- Semantic SLAM Research: Developed end-to-end semantic SLAM systems integrating deep learning-based object detection with traditional SLAM, enabling semantic understanding for autonomous robotic navigation.
- **Production-ready Robotics Frameworks:** Implemented robust data association and loop closure detection algorithms using semantic objects, creating reusable frameworks for semantic robotics applications.

Carnegie Mellon University

Summer Research Intern

Pittsburgh, PA May 2017 - Aug. 2017

• Real-time Robotics Visualization: Developed dynamic texture mapping systems for real-time stiffness visualization, creating production-quality RViz plugins with texture mapping and projective geometry for surgical robotics applications

• Multi-modal Robotic Perception: Implemented comprehensive vision systems combining Intel RealSense and Hokuyo LiDAR for 6-legged robots, integrating RGBD and monocular SLAM with person tracking and 3D mapping capabilities.

Selected Research Projects

Research Project Oct 2019 - Dec 2019

Curiosity-Driven Exploration for Autonomous Navigation

• Implemented Intrinsic Curiosity Module and Random Network Distillation for autonomous navigation in unknown environments, demonstrating novel applications of curiosity-driven learning to real-world robotics challenges in the MineRL Navigation Challenge.

ML Research Project Jan 2020 - April 2020

Motion Forecasting using Transformer-based Models

 Developed trajectory prediction models for autonomous vehicles using LSTM Encoder-Decoder architectures and Social GAN approaches on the Argoverse dataset, achieving state-of-the-art performance in multi-agent motion forecasting for robotics applications.

Computer Vision Research

Sept. 2017 - May 2018

Multi-focal Image Fusion using Deep Neural Networks

Designed CNN-based image fusion approach using Siamese network architecture to compute optimal fusion masks
for multi-focal image pairs, demonstrating advanced deep learning techniques for enhanced robotic perception and
computer vision applications.

Publications

- Qian Zhentian, **Kartik Patath**, Fu, Jie and Xiao Jing, "Semantic SLAM with Autonomous Object-Level Data Association", research paper in IEEE International Conference on Robotics and Automation, ICRA 2021.(accepted)
- **Kartik Patath**, R. Arun Srivatsan, Nicolas Zevallos and Howie Choset, "Dynamic Texture Mapping of 3D models for Stiffness Map Visualization", poster presentation in the workshop on Medical Imaging at the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017.
- Kartik Patath, Hadi Salman and Howie Choset, "Visual system for a Modular 6-Legged robot", research paper and poster in vol.5, pages 138-141, Robotics Institute Summer Scholars Journal 2017.
- Nicolas Zevallos, R Arun Srivatsan, Hadi Salman, Lu Li, Jianing Qian, Saumya Saxena, Mengyun Xu, **Kartik Patath** and Howie Choset, "A surgical system for automatic registration, stiffness mapping and dynamic image overlay", The International Symposium on Medical Robotics, ISMR 2018.
- N. Zevallos, R. A. Srivatsan, H. Salman, L. Li, J. Qian, S. Saxena, M. Xu, **K. Patath** and H. Choset, "A Real-time Augmented Reality Surgical System for Overlaying Stiffness Information", in proceedings of Robotics: Science and Systems, RSS 2018.

Patents

21 12h //1//	Systems and Methods for Estimating a Gap Between Positioning and	USA
	Odometry Signals, Application Number 18/428,329	USA
05 May, 2017	Humanoid Robot, Application Number 201721015920	India
22 Dec, 2016	Robotic Cleaning System, Application Number 201621043891	India

Achievements & Awards

2017	Summer Scholar , Robotics Institute Summer Scholars Program	Pittsburgh, PA
2017	Scholarship , Federation of Indian Chambers of Commerce and	Pittsburgh, PA
	Industry (FICCI)	